Article Article
Concrete Microcracks Detection under Compressive Load Based on Nonlinear Ultrasonics Modulation with Broadband Excitation

The initiation and propagation of microcrack damage in concrete under compressive load have a great influence on structures that require high durability. This paper theoretically analyzed the nonlinear acoustic modulation mechanism in concrete at the initial stage of compressive cracking and explored the relationship between microcrack density and nonlinear response variation. Nonlinear behavior and microcrack development of concrete were simulated. The opening/closing state of microcracks under different cracking states and the propagation characteristics of nonlinear acoustic modulated signals were investigated. It was found that the change in microcrack density measured by the DI (damage index) of the nonlinear acoustic field technology was much more significant than that measured by DIC (digital image correlation). The experimental results showed the good feasibility of microcrack detection with width of 13–80 μm. Moreover, the experiment found that when the peak value of DI is between 0.02 and 0.2, microcracks occur in concrete.

DOI: https://doi.org/10.1080/09349847.2022.2089793

References

1. S. Gollob and G. K. Kocur, J. Sound Vib. 494, 115861 (2021).

2. M. Elzafraney and P. Soroushian, Mater. Civil Eng. 17, 159–167 (2005).

3. Y. Y. Lim, S. T. Smith, and C. K. Soh, Ndt&E Int 99, 50–63 (2018).

4. D. Breysse et al., Mater. Struct. 50, 133 (2017).

5. D. Broda et al., J. Sound Vib. 333, 1097–1118 (2014).

6. K. Y. Jhang, Int. J. Precis. Eng. Man. 10, 123–135 (2009).

7. S. E. Lee et al., Ndt&E Int 107, 102132 (2019).

8. I. Solodov, N. Krohn, and G. Busse, Nonlinear ultrasonic Ndt for early defect recognition and imaging, 10th European Conference on Non-Destructive Testing 2010 (Ecndt), Moscow, Vols 1-5, (2010).

9. A. Klepka et al., Struct. Health Monit. 11, 197–211 (2012).

10. H. Sohn et al., J. Sound Vib. 333, 1473–1484 (2014).

11. H. Sohn, H. J. Lim, and S. Yang, in Smart Sensors for Health and Environment Monitoring, edited by C.M. Kyung, Springer: Netherlands, Dordrecht, 233–253 (2015).

12. K. Kawashima et al., Ultrasonics. 40, 611–615 (2002).

13. P. Antonaci et al., Cement Concrete Res. 40, 340–346 (2010).

14. J. P. Zardan et al., J. Acoust. Soc. Am. 128, El38–El42 (2010).

15. S. S. Srinivasan, Effect of Microcracking on Strength and Durability of Low Water-tocement Ratio Concretes. Austin: University of Texas, (2020).

16. M. Domaneschi et al., Appl. Sci-Basel. 10, 3248 (2020).

17. M. Morgese et al., Aci. Struct. J. 18, 91–102 (2021).

18. J. M. C. Ongpeng, W. C. Oreta, and S. Hirose, J. Adv. Concr. Technol. 14, 205–214 (2016).

19. S. E. Lee and J.-W. Hong, Materials. 19 (1), 13 (2020). DOI: 10.1038/s41563-019-0435-z.

20. Y. Zhang et al., J. Acoust. Soc. Am. 139, 1691–1701 (2016).

21. J. Wolf, S. Pirskawetz, and A. Zang, Eng. Fract. Mech. 146, 161–171 (2015).

22. N. Gehri, J. Mata-Falcón, and W. Kaufmann, Constr. Build. Mater. 256, 119383 (2020).

23. Y. Xu et al., Constr. Build. Mater. 267, 1–15 (2021).

24. Y. Xu et al., J. Mater. Civil Eng. 34, 04021473 (2022).

25. D. Donskoy, A. Sutin, and A. Ekimov, Ndt&E Int. 34, 231–238 (2001).

26. H. F. Zheng et al., Nondestruct. Test Eva. 34, 324–338 (2019).

27. J. Kim, D.-G. Song, and K.-Y. Jhang, Res. Nondestruct. Eval. 28, 211–225 (2017).

28. A. Litorowicz, Cement Concrete Res. 36, 1508–1515 (2006).

29. E. Ringot and A. Bascoul, Cement Concrete Comp. 23, 261–266 (2001).

30. J. Jia et al., Adv. Mech. Eng. 9, 1–12 (2017).

31. B. Liu, J. Yang, and T. Gang, Mech. Syst. Signal Pr. 143, 1–10 (2020).

32. P. Liu et al., Ndt&E Int 66, 106–116 (2014). DOI: 10.1016/j.ndteint.2014.06.002.

33. P. Liu and H. Sohn, J. Sound Vib. 411, 106–116 (2017).

34. I. Gitman, Representative Volumes and multi-scale Modelling of quasi-brittle Materials

(Perm State Technical University, geboren te Kaluga, Rusland, 2006).

35. M. A. S. Sudin and M. Ramli, Matec. Web Conf. 10, 02003 (2014).

36. C. Li, L. Kong, and R. An, J. Rock Mech. Geotech. 5, 12 (2022).

37. B. Wang, E. Zhu, and Z. Zhang, J. Eng. Mech-ASCE. 148, 04021153 (2022).

38. X. Xiong and Q. Xiao, Appl. Sci. 9, 2986 (2019).

39. J. Ying and J. Guo, Materials. 15 (1), 14 (2021). DOI: 10.3390/ma15010014.

40. Z. Gyurko and R. Nemes, Eng. Fail Anal. 101, 464–472 (2019).

41. T. J. Liu et al., Constr. Build. Mater. 192, 429–441 (2018).

42. Y. J. Peng et al., Struct. Concrete. 19, 1–15 (2020).

43. D. H. Wei et al., Cement Concrete Res. 134, 106096 (2020).

44. G. Sokhansefat et al., Cement Concrete Comp. 98, 150–161 (2019).

45. Y. Liu et al., J. Mater. Civil Eng. 30, 04017248 (2018).

46. R. Kumar and B. Bhattacharjee, Cement Concrete Res. 33, 155–164 (2003).

47. U. Cicekli, G. Voyiadjis, and R. Abu Al-Rub, Int. J. Plasticity. 23, 1874–1900 (2007).

48. M. Cai, Acousto-plastic Deformation of Metals by Nonlinear Stress Waves (The Ohio State University, Ann Arbor, 2006).

49. I. S. Yoon and E. Schlangen, Ksce J. Civ. Eng. 18, 188–198 (2014).

50. W. F. Chen and A. F. Saleeb, Constitutive Equations for Engineering Materials. Netherlands: John Wiley & Sons Inc, (2013).

 

Metrics
Usage Shares
Total Views
53 Page Views
Total Shares
0 Tweets
53
0 PDF Downloads
0
0 Facebook Shares
Total Usage
53