NASA Satellite Servicing

Presented during In-Space Inspection Workshop
January 31, 2017

Justin Cassidy
SSPD International Space Station Projects Office Deputy
Satellite Servicing Projects Division
NASA’s Goddard Space Flight Center
Justin.Cassidy@nasa.gov
Satellite Servicing Capabilities

Servicing provides capabilities for resilient architectures

Remote Inspection
 Relocate
 Replace
 Repair

Refuel
Replenish
Assemble
How We Do Business

Stakeholders
- Commercial Owners, Operators, Insurers
- Department of Interior USGS
- NASA Science
- NASA Exploration
- Department of Commerce NOAA
- Other Government Agencies

Continuous Needs Assessment

Satellite Servicing Projects Division

Projects
- Robotic Refueling Mission 1, 2, 3
- Raven Project
- Near Earth Object Detector
- Restore-L Servicing Mission
- Asteroid Redirect Mission
- Cooperative Servicing Aids

Technologies
- Relative Navigation System
- Servicing Avionics
- Fluid Transfer System
- Robot Arm and Software
- Tool and Tool Drive System

Studies
- WFIRST
- LUVOIR
- FarIR
- 20-Meter
- Landers
- EMC - tug
- EMC - MAV
Projects on ISS or in Development

RRM3
- Launching in 2018
- Developing technologies for cryogen and xenon transfer

External Leak Locator
- Quadrupole mass spectrometer
- Species identification and concentration
- Expected capability: plume source to within 1 m²

Raven
- Launching in Jan 2017
- Testbed for autonomous rendezvous algorithms and sensors

VIPIR / VIPIR2
- Fixed camera
- Motorized zoom lens camera
- 30” deployable articulating camera

ISS Technology Development is cost-effective and highly visible
RRM Phase 1
- **Storable propellants: steps required to refuel a legacy spacecraft**
 A. Take apart components (cut wire, manipulate thermal blankets and fasteners, remove caps)
 B. Connect refueling hardware and transfer fluid
 C. Reseal fuel port
- **Cryogen fluid: initial steps required to replenish cryogens in zero-g**
 1. Take apart components

RRM Phase 2
- **Cryogen fluid: intermediate steps required to replenish cryogens**
 2. Connect replenishment hardware

RRM Phase 3
- **Cryogen fluid: final steps required to replenish cryogens**
 3. Transfer and freeze cryogenic fluids in 0-g, maintain fluid mass for six months via zero boil-off
 - Share technology data with Space Launch System (SLS), ISRU, Advanced ECLSS
- **Cooperative recharge of xenon propellant**

Timeline
- **RRM Phase 1**
 - 2011: Machine Vision Task
 - 2012: Cryogen Step 1 complete
 - 2013: Propellant Steps A, B, C complete
 - 2014: Cryogen Step 2 Complete
- **RRM Phase 2**
 - 2015: Cryogen Step 3 & Xenon planned
- **RRM Phase 3**
 - 2016: 2017: 2018:

RRM is a joint demonstration with the Canadian Space Agency that is advancing technologies required for future exploration missions beyond low earth orbit as well as demonstrating on-orbit servicing techniques for legacy and cooperative spacecraft.
The Robotic Refueling Mission tested tools, technologies and techniques to refuel and repair satellites in orbit – especially satellites not designed to be serviced.

On-Orbit robotic demonstrations included:
- Lockwire cutting and removal of fill/drain valve and cap components
- Tape cutting and MLI manipulation
- Fluid transfer through an on-orbit mated nozzle-to-valve connection
In Phase 2, NASA tested a new inspection tool, practiced intermediary steps leading up to cryogen replenishment, tested electrical connections for "plug-and-play" space instruments, and worked with decals and a vision system to guide ground operators.

Task Board 4 (TB4) returned to Earth on SpX-8, Currently evaluating solar cell and material exposure data to compare to pre-flight measurements.
Advanced Robotic Tools - Phases 1 and 2

Multiple tools and adapters were developed

Visual Inspection Poseable Invertebrate Robot (VIPIR)

MLI/Wire Cutter Tool (WCT)

EVR Nozzle Tool (ENT)

Safety Cap Tool (SCT)

Adapter Suite

Multi-Function Tool

The MFT provides an interface with several adapters
VIPIR is a robotic, teleoperated inspection tool equipped with an articulating, deployable borescope and a motorized zoom-lens camera.

- Provides close- and mid-range inspection capabilities
- Video Borescope Assembly (VBA)
 - Nearly three feet of deployable tube
 - Final 2.5 inches rotate up to 90 degrees in four opposing directions
 - Ideal for inspection at 1-2 inches from subject
- Motorized Zoom Lens (MZL)
 - 8-24mm optical zoom lens
 - Can resolve worksite details as tiny as 0.02 inch while tool stays 2 feet from spacecraft
- Situational camera (fixed)
 - Helps control tool during operations
VIPIR Design Overview - Vision

Fixed Camera Assembly

Primary Tool Vision Camera

NTSC, Color, VGA (640 x 480)

This camera, with a fixed 6mm focal length has full view of Reel Position visual indicators and is used as the primary camera for tele-operation, tool positioning, and VBA deployment.

Video Borescope Assembly (VBA)

Miniaturized Close-range Inspection Camera

NTSC, Color, (224 x 224)

- This camera, with miniaturized optics and sensor is designed to be deployed into an open orifice, tube, or cavity with ~1-inch diameter cross-section
- The VBA camera is used to deploy into close-quarters worksites, and provide views of hard-to-reach targets using its miniaturized optics and integrated lighting.

Motorized Zoom Lens Camera

Mid-range Inspection Camera

NTSC, Color, VGA (640 x 480)

- This camera, with miniature motorized 8-24mm optical zoom and focus capability, is used for worksite inspection and tool positioning at 8mm focal length.
- At 24mm focal length, this camera serves as an excellent mid-range detailed inspection camera.
VIPIR – VBA Articulation Video

Visual Inspection Poseable Invertebrate Robot (VIPIR)
Video Borescope Articulation
Robotic Refueling Mission (RRM) Phase-2B
NASA Goddard Satellite Servicing Capabilities Office
RRM2 – Task Board 4
VIPIR Inspection Path

- Inlet Port
- Decision Box
- Optical Target
- VBA Camera
- VBA
- VIPIR
VIPIR On-Orbit Inspection Video

VISUAL INSPECTION POSEABLE INVERTEBRATE ROBOT (VIPIR)

On-Orbit Footage - May 4, 2015 (2x speed)

Robotic Refueling Mission (RRM)
- Phase 2 -
Taskboard 4 Inspection Task
VIPIR’s Inspection of SSRMS Boom
Motorized Zoom Lens Camera

- VIPIR was used by the ISS Program to examine an unexplained discoloration on the SSRMS, the Space Station Remote Manipulator System in Oct 2015
- VIPIR captured imagery that confirmed that there was a raised mass (center) on the SSRMS
- The lighting conditions cast a shadow (extending to right of the mass site) that showed the presence of the object

3D Animated .gif processed by the JSC Image Science and Analysis Group

VIPIR Imagery (~8” from MZL)
• Tool Suite for RRM3 is being updated based on lessons learned from previous missions
 • Improved Hose manipulation
 • More compliance between tools and interfaces
 • Enhance cameras and positioning systems

VIPIR2:
Similar to VIPIR – situational awareness and close-range inspection

Cryogen Servicing Tool:
Transfers cryogen fluid from source dewar to receiver dewar

Multi-Function Tool-2:
Technology pathfinder for Restore-L tool development
• The Visual Inspection Poseable Invertebrate Robot 2 (VIPIR2) is a robotic inspection tool that builds upon the success of its predecessor, the RRM Phase 2 VIPIR

• VIPIR achieved all of its mission objectives during RRM Phase 2 operations in May 2015
VIPIR2 Design Overview – Vision

Fixed Camera Assembly (FCA)
Situation Awareness Camera
NTSC, Color, VGA (640 x 480)
Provides view of the front end of the tool and various visual indicators in order to position the tool to the worksite and deploy the VBA

Video Borescope Assembly (VBA)
Miniaturized Close-Range Inspection Camera
Digital, Color (1280 × 720)
Deploys into close-quarters worksite, provides view of hard-to-reach target using miniaturized optics, sensor, and integrated lighting

Enhanced Motorized Zoom Lens (EMZL)
Mid-Range Inspection Camera
NTSC, Color, VGA (640 x 480)
Provides view of target using motorized 12-36 mm optical zoom and focus capabilities
Updated Camera effectively doubles pixel sampling
RRM Summary

• RRM is a highly successful on-orbit demonstration series
• Awarded the Top Exploration Technology Application from the International Space Station in 2012
 - All objectives to date have been achieved
 - Advanced the TRL for in-space servicing, space robotics and ground control
 - Team gained significant knowledge with respect to the robotics alignment, tool markings, interfaces and loads
• RRM is a great teaming model of inner agency and multi-national partnerships
• The International Space Station has been a cost effective platform for rapid technology development
Raven Overview

During its two-year lifespan on ISS, NASA operators on the ground will be evaluating how Raven’s technologies are working as a system and making adjustments to increase Raven’s tracking performance. Contains three sensors (visible, infrared, lidar), a high-speed processor (SpaceCube) and advanced algorithms.

- Technology demonstration launching to ISS on Space Test Program-Houston 5 on the SpaceX CRS-10 mission
- Raven will track visiting vehicles to ISS, developing a “off-the-shelf” relative navigation capability for NASA
- Raven technologies apply to:
 - Restore-L servicing mission
 - Asteroid Redirect Mission
 - Orion
 - Journey to Mars
 - ISS
Objective:

To advance the state-of-the-art in rendezvous and proximity operations (RPO) hardware and software by demonstrating:

• Accurate relative navigation to visiting vehicles:
 - Progress
 - Soyuz
 - Cygnus
 - HTV
 - Dragon

• Autonomous operations during visiting vehicle approach

• Both non-cooperative and cooperative relative navigation using a single sensor suite
Raven Science Objectives

• Collect sensor data (visible, infrared, lidar) over various ranges
 - Critical for post-processing rendezvous for a best-estimated trajectory

• Collect imagery for unique visiting vehicles
 - Useful to verify and develop on-orbit modeling techniques; compare to accurate CAD models

• Collect imagery over multiple rendezvous per vehicle
 - Rendezvous is more valuable science-wise due to expected vehicle dispersions and durations

• Demonstrate real-time Pose estimation for several visiting vehicles
 - Critical, final validation of relative navigation components
 - Proves flexibility for multi-client servicing vehicle

• Demonstrate multi-sensor filtered solution tracking of visiting vehicles
 - Non-cooperative and cooperative pose measurements
Pose Overview
Goddard Nature Feature Image Recognition (GNFIR)

• Estimates 3D pose (position & orientation) from a 2D image
• Detects edges in images, compares with a-priori object model
• Capable of initialization and tracking
• Raven will fly two variants
 - GNFIR-IR – Infrared
 - GNFIR-Vis – Visible
• Sample from STS-125 HST SM4, image from camera that will re-fly on Raven
Sample GNFIR Tracking

GNFIR-IR

GNFIR-Vis
Pose Overview
Flash POSE (FPose)

Flash LIDAR Basics

Flash LIDARs
At each measurement time, Flash LIDARs create both an intensity image and a range image. The range image may be reinterpreted as a 3D point cloud.

Example: STORRM VNS Image from STS-134

Transforming 3D point cloud into Pose

Model of object overlaid in point cloud at Pose solution position and orientation