Multi-Spectral Measurements for Detection, Location, and Evaluation of Impacts to Space Structures

In Space Inspection Workshop – 2 February 2017

Invocon, Inc.
19221 IH 45 Conroe TX 77385
Ph: 281-292-9903
www.invocon.com

Aaron Trott – atrott@invocon.com

© 2017 Invocon, Inc. All Rights Reserved.
Overview

- The Challenge
- Hypervelocity Impact (HVI) Background
- Previous Work – Detection, Location, and Evaluation
 - Civilian
 - Military
- Future Work
 - Impact/Leak Location
 - New Approach for Impact Evaluation
The Challenge

- The smallest of particles or debris can cause significant damage to spacecraft
- Impacts can compromise spacecraft operation or cause catastrophic failure
- Understanding hypervelocity impact (HVI) events (i.e. collisions greater than a few kilometers per second) will help to improve spacecraft reliability
- An understanding of impacts includes:
 - Detection – An awareness of what happened
 - Location – An awareness of where it happened
 - Evaluation – An awareness of how bad it is
Spacecraft Environment

- Meteoroids
- Solar Wind
- Debris
- Ionosphere
- Geomagnetic field
- Spacecraft plasma sheath
- Thruster plume
- Differential surface charging
- Power distribution

Image courtesy of Stanford University

© 2017 Invocon, Inc. All Rights Reserved.
Hypervelocity Particles

• Meteoroids
 – Speeds
 • 11 to 72.8 km/s (interplanetary)
 • 30-60 km/s (average)
 – Densities
 • ≤1 g/cm3 (icy)
 • > 1 g/cm3 (rocky/stony)
 – Sizes
 • < 0.3 m (meteoroid)
 • < 62 μm (dust)

• Space Debris
 – Speeds in LEO
 • < 12 km/s
 • 7-10 km/s (average)
 – Densities
 • > 2 g/cm3
 – Sizes
 • < 10 cm (small)

Probability of Impact? Effects from Impact?

Courtesy of Stanford University
Flux

Should we worry about the small particles?

Courtesy of Stanford University
Spacecraft Anomalies

<table>
<thead>
<tr>
<th>Spacecraft</th>
<th>Year</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olympus</td>
<td>1993</td>
<td>ESA</td>
</tr>
<tr>
<td>Landsat 5</td>
<td>2009</td>
<td>NASA</td>
</tr>
<tr>
<td>JASON-1</td>
<td>2005</td>
<td>NASA</td>
</tr>
<tr>
<td>ADEOS II</td>
<td>2003</td>
<td>JAXA</td>
</tr>
<tr>
<td>ALOS</td>
<td>2011</td>
<td>JAXA</td>
</tr>
</tbody>
</table>

NGDC Database: Anomaly Diagnosis

- Electron Caused EM Pulse (Deep Dielectric Charging) - 490
- Electrostatic Discharge (Surface Charging) – 1072
- Single Event Upset - 822
- Radio Frequency Interference – 8
- Unknown – 2587

Courtesy of Stanford University
Recommendation: The NASA meteoroid and orbital debris programs should establish a baseline effort to evaluate major uncertainties in the Meteoroid Environment Model regarding the meteoroid environment in the following areas:

1) meteoroid velocity distributions as a function of mass;
2) flux of meteoroids of larger sizes (>100 microns);
3) effects of plasma during impacts, including impacts of very small but high-velocity particles; and
4) variations in meteoroid bulk density with impact velocity.”
Research Objective

• Spacecraft are routinely impacted by hypervelocity particles with possibility of damage
 – Mechanical: “well-known”, larger (> 120 microns), rare
 – Electrical: “unknown”, smaller, more numerous
 • Electrostatic Discharge (ESD)
 • Electromagnetic Pulse (EMP)

• **Objective**: *characterize plasma, radio frequency (RF) emission, acoustic emissions, acceleration, and light from impacts to assess possibility of spacecraft damage*
Previous Work

- Impact Detection and Location
 - Already accomplished using various modes/spectra

- Impact Evaluation (**Real-time, In-situ**)
 - In its infancy
 - Have conducted studies using
 - Vibration
 - Acoustic emissions
 - Conducted RF
 - Radiated RF
 - Plasma
Impact AE/RF/Plasma Emissions Testing
NASA White Sands Test Facility (WSTF)

Target Setup in Chamber

Actual Impact Location: (-5.87, -6.25)

Triangulation Location: (-5.93, -6.27)

RF Waveforms

Sensors

Stanford Sensor
Invocon Spacecraft Measurements

- Spacecraft Test, Evaluation & Monitoring
- Structural Analysis
- Condition-Based Maintenance
- Micro-Gravity Measurement
Wing Leading Edge Impact Detection System

Monitored impacts during ascent and MMOD impacts in orbit

Relay Units

Laptop-based Receiver

Sensor Units

Note: Similar units presently used to monitor BEAM
Distributed Impact Detection System (DIDS)

- Low-power impact detection and leak location for ISS
- Acoustic Emission, Acceleration, Ultrasonic
- Continuous monitoring of impact events
- Ultra low-power trigger modes
- Sample rates to ~1 MHz
- 4 channels / device
- Presently used on BEAM

NASA photo – DIDS on ISS
Impact Monitoring on Bigelow Expandable Activity Module (BEAM)

- **BEAM**
 - Inflatable habitat attached to ISS for two-year test and evaluation
 - Preparation for future habitats – long-duration and deep space

- **Instrumentation for**
 - Deployment dynamics
 - Radiation
 - Temperature
 - **Hypervelocity Impacts**

- **Challenges of Inflatable**
 - Many diverse layers
 - Low-Frequency
 - Significant attenuation

© 2017 Invocon, Inc. All Rights Reserved.
Launch Vehicle Instrumentation & Avionics

- Precision Control, Monitoring, & Communication Systems for Launch Vehicles & Spacecraft
- Pyrotechnic Sequencers & Timers
- Hit Grid Systems for Lethality Assessment
- Smart Batteries
- Integrated Telemetry Systems
Future Work

- Impact/Leak Detection and Location
 - Health Interrogation for Space Structures (HISS)
- Impact Detection, Location, and Evaluation
 - Optical Approach
Health Interrogation for Space Structures (HISS)

- Response to requests from NASA
- Upgraded Distributed Impact Detection System (DIDS)
 - Present system has been expanded well beyond its initial purpose
 - Adds significant additional data acquisition and processing capabilities
 - For present leak/impact detection needs
 - Generic and capable enough for expanded roles in future
- Multi-level, distributed sensing and processing
 - Transducers – multiple per Sensor Unit
 - Sensor Units – multiple per ISS module
 - Module hub – one hub per module
 - Server – one per vehicle
- User access to alerts, data, and control
 - Flight crew – Space Station Computers (SSC) & tablet computers via web browser
 - Ground crew

© 2017 Invocon, Inc. All Rights Reserved.
An Alternate Approach

- Use Optics for Impact Evaluation
- Simplify approach to improve SWaP-C constraints
 - Assumes we know material for each layer of vehicle
 - Assumes we can continuously monitor with optics
- Monitor discrete frequencies in optical spectrum
- Witness flash from impact
- Determine materials involved in impact based on spectroscopic signature
- Determine the layers penetrated by an impact
Alternate RF Approach

- Replace AE components in WKIPS with RF analogies
- Direct line of sight not necessary
- Mount sensors inside or outside vehicle
- Conducted or radiated RF can be used (may want to add conductive layer)
- Instrumentation exists TODAY to perform this testing/monitoring
- Data already exists from this system that validates many of its capabilities
- Includes capability for impact location
Summary

- Research is ongoing for HVI effects associated with RF and Plasma
- Research has resulted in practical tools
 - Presently aboard manned and unmanned space vehicles
 - Can be applied to TPS, satellites, and other structures
 - More (complimentary) information can be obtained from multi-spectral measurements
- New approaches can improve monitoring outcomes
 - Upgrading impact/leak location will significantly increase capabilities/automation
 - Optical approach will improve impact evaluation capabilities
 - RF approach builds on present system
 - Wireless synchronization to 1ns will enable simple deployment
Acknowledgments

Thanks to the Invocon personnel who have invested significant time, effort, and creativity into these concepts to make them reality.

Thanks to NASA personnel who have worked closely with Invocon over the past several years to develop and deploy these systems.

Thanks to Dr. Sigrid Close at Stanford for her inputs to this presentation.

Thanks to NASA JSC and WSTF for contributing initial shots for HVI verification testing.